

MproTAC - New approach for development of SARS-CoV-2 antiviral drugs

Kaixuan Zhang¹, Judith Röske¹, Lisa Buddrus¹, Hannah Maple², Alex Moloney², Graham Marsh², Mark Cooper², Burhan Karadogan², You-Ting Chen³, Katharina Rox³, Mark Brönstrup^{3,4}, Arne Meyer⁵, Melissa Graewert⁶, Rolf Hilgenfeld^{1,4}

1 University of Lübeck, Institute of Molecular Medicine, Lübeck, Germany; 2 Bio-techne, Bristol, United Kingdom; 3 Helmholtz-Centre for Infection Research, Braunschweig;

4 German Center for Infection Research (DZIF), Germany; 5 XtalConcepts GmbH, Hamburg, Germany; 6 European Molecular Biology Laboratory c/o DESY, Hamburg, Germany

Introduction

Following the outbreak of COVID-19, many direct-acting antiviral therapies have been developed ^[1]. A number of drugs (nirmatrelvir, ensitrelvir) have been approved as inhibitors of the SARS-CoV-2 main protease (Mpro). An alternative approach has recently been introduced with the Proteolysis-Targeting Chimeras (PROTACs).

PROTACs ^[2] are hetero bifunctional molecules that stimulate ubiquitin transfer to attain target protein degradation. They are composed of the protein of interest (POI) ligand and an E3 recruiting ligand connected by a linker. Different from the competitive and occupancy-driven mode of action (MOA) of inhibitors, PROTACs recruit E3 ligase to the POI and induce the ubiquitin-proteasome-system ^[3] (UPS) via the 26S proteasome. The result will be the degradation of the POI. Due to the catalytic event-driven MOA, degraders could achieve efficacy in lower doses as compared to conventional inhibitors, thus minimizing potential toxicity and side-effects. We have currently some lead MproTACs (Mpro PROTACs) that recruit SARS-CoV-2 Mpro. We characterized them by using biochemical and biophysical techniques. Here, we present our work on the shape and dynamics of ternary complexes involving Mpro, a chemical linker, and DDB1- CRBN (the ubiquitin ligase) / CRBN midi.

Figure 1. PROTAC concept: Direct recruitment of an E3 ligase by using the PROTAC

Figure 2. Structure of MproTACs with non-covalent C10778 and covalent 13b-K Mpro ligands

Name	Mpro ligand type	Structure
C10778N Designed after Mpro Inhibitor compound 19 ^[4]	non-covalent	$ \begin{array}{c} $
BT153 From series 13b-K ^[5]	covalent	$ \begin{pmatrix} \downarrow \\ HN \\ \downarrow \\ 0 \\ \downarrow \\ NH0 \\ HN \\ 0 \\ \downarrow \\ NH0 \\ 0 \\ HN \\ 0 \\ \downarrow \\ NH0 \\ 0 \\ HN \\ 0 \\ \downarrow \\ NH0 \\ 0 \\ HN \\ 0 \\ \downarrow \\ NH0 \\ 0 \\ HN \\ 0 \\ \downarrow \\ NH0 \\ 0 \\ HN \\ $

Chemical structures of Mpro ligands used in this study include the non-covalent (Compound 19^[4]) and covalent (13b-K^[5]) inhibitors.

Image from: J.Y Xi et al. J. Bioorg. 2022,105848, Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery.

Figure 3a. Inhibition of Mpro by PROTACs

Determination of inhibition (IC₅₀) by using a fluorescent substrate with the cleavage site (indicated by the arrow, \downarrow) of SARS-CoV-2 Mpro (Dabcyl-KTSAVLQ \downarrow SGFRKM-E (Edans)-NH₂).

Figure 3b. Antiviral activity (EC₅₀) of MproTACs

Antiviral activity (EC_{50}) of PROTACs was determined by screening against live virus (SARS-CoV-2/ZG/297–20, MOI 0.05) in Vero E6 cells using a cell viability assay (CellTiter-Glo®).

Figure 4. Surface plasmon resonance (SPR) to determine MproTAC binding affinity

CRBN midi ^[6] (hCRBN_UniProt: Q96SW2, residue 41-187 and residue 249-426 connected by a GSG loop) was immobilized on a Hiscap chip to determine the K_D value using the Octet® SPR instrument from Sartorius. BT153 bump served as a negative control. (binding to Mpro but not to CRBN midi)

Figure 5. Dynamic Light-Scattering (DLS) to determine ternary complex formation

Determination of protein size in solution (DLS) by using the instrument SpectroLight 600 from XtalConcepts GmbH, Hamburg. A describes the level of protein aggregation by size (radius) and time trend (unit / min). **B-D** show the size of the protein (radius) by peak and the polydispersity (PD) index.

Figure 6. Small-angle X-ray-scattering to derive low-resolution structure of ternary complex

Biological Small-angle X-ray scattering data of MproTACs BT153 and C10778N. **A.** Scattering curves I(*S*) for ternary complex of BT153, C10778N and BT153 bump (negative control). (I, intensity of scattering) as a function of momentum transfer ($s = 4\pi sin(\theta)/\lambda$) and is displaced along the y-axis for visualization. **B.** Normalized pair distance distribution functions P(r) calculated from the scattering profiles by PRIMUS for DDB1-CRBN (blue), ternary_BT153 (orange), ternary_C10778N (grey), DDB1-CRBN with BT153bump (yellow). **C.** Summary data of Dmax (the maximum size of protein molecule) and R_G (radius of gyration). The comparison shows ternary complex formation with BT153 and C10778N. **D.** Ab initio models built by DAMMIF with the fit of the SAXS envelope to the corresponding high-resolution structure. DDB1-CRBN (orange, PDB 80iz) and SARS-CoV-2 Mpro (green, PDB 6y2e) were superimposed on to the SAXS model. The experiment was conducted at the EMBL beamline P12 (Petra III, DESY, Hamburg).

Referen

G. Li, R. Hilgenfeld, R. Whitley & E. De Clercq, *Nat. Rev. Drug. Discov.* 2023, 22, 449-475.
 D. L. Buckley, C. M. Crews, *Argew. Chem. Int. Ed.* 2014, 53, 2312-2330.
 A. Cischanover, A. L. Schwattr, *Proc Natl. Acad. Sci. USA* 1998, 95, 2727-2730.
 A. Luttens et al. *J. Aux. Chem. Soc.* 2022, 144, 2905-2920.
 M. S. Cooper et al. *J. Med. Chem.* 2022, 65, 13328-13342.
 D. Zollman, A. Cluilt et al. *bioRxiv.* 2024, hps://doi.org/10.11101/2024.01.17.575503.